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One-dimensional spin glasses, uniqueness and cluster 
properties? 

Aernout C D van Enter$ 
Dublin Institute for Advanced Studies, 10 Burlington Road,  Dublin 4, Ireland 

Received 2 October 1987 

Abstract. We discuss some recent results on  the absence of phase transitions in one- 
dimensional spin-glass models with polynomially decaying interactions. We comment on 
the probabilistic aspects and  on the notion of 'weak uniqueness'. 

1. Introduction 

Spin glasses are among the more fashionable models of statistical mechanics. The 
original problem (and name) comes from the attempt to describe magnetic atoms (like 
Fe) which are diluted in a not too high concentration (such as 5 % )  in a non-magnetic 
environment (like Au) and  which interact via the long-range oscillating R K K Y  inter- 
action. 

The Hamiltonian this problem gives rise to is 

where the quenched disorder variables E ,  =0,  1 describe the dilution and the s, are 
spin variables. 

Owing to the oscillating character of the cosine and the long-range character of 
the 1 / /  i - j  l 3  interaction, a particular spin can be subject to many competing forces 
from the other spins. The combination of randomness and  'frustration' is generally 
modelled by Edwards-Anderson ( E A )  models of the form (1) 

where the site-random Hamiltonian ( 1 )  is replaced by a bond-random Hamiltonian in 
which the j( i, j )  are independent random variables with a distribution which only 
depends on the distance I i - j / .  Both short- and long-range EA models have been 
studied. They have been applied to many other areas, in particular to the theory of 
neural networks and to optimisation problems. 

Spin glasses have attracted extensive interest among physicists (for some recent 
reviews, see [2-51). U p  till now, i t  has been very difficult to obtain mathematically 
rigorous results on the presumed low-temperature spin-glass phase (for some recent 
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heuristic theories, see [6-81). On the other hand, during the last years there have been 
a number of results about the region where there is no phase transition (high temperature 
or low dimension), despite the possible occurrence of Griffiths singularities [ 9 ] ,  which 
prevents the thermodynamic quantities to be analytic. In this paper I will describe 
some of these results for long-range models, in particular in one dimension, and discuss 
some conceptual problems, such as the 'weak' against 'strong' uniqueness of the Gibbs 
state. 

2. Results for long-range models 

The models we consider have Hamiltonians 

where the J (  i, j )  are independent, identically distributed random variables. We use 
the symbol E for taking the average over the disorder variables {J(i, j ) } .  The {J} 
distribution satisfies 

EJ(  i, j )  = 0 ( 4 0 )  

and (for small t )  

E exp( t J (  i, j ) )  = exp(O( ?)). 

If we have a boundary condition U outside a volume ii we write 

The free energy of a volume A, at inverse temperature p and boundary condition a is 

PF\ , , ( {J) ,  P )  = ( - l / l . I l )  In t r ,  exP(-PH\,~({J}{s}\)) .  (6) 

These models have been studied both heuristically and rigorously. Here we describe 
the rigorously known results. A heuristic treatment, which also gave predictions for 
critical behaviour as a function of cy, was given in [lo]. 

In particular, theorems 2 and 3 confirm the predictions made there for the occurrence 
of the paramagnetic phase. As a phase transition is predicted for a < 1, theorem 2 is 
supposedly a close to optimal result. 

The following results are known. 

Theorem 1 [ll-131. If cy > 4 and .I + a in the sense of Fisher, 

lim F, ,u  = lim EF,, ,  =.f 
\ - X  \ -X 

exists, J-almost surely, and  does not depend on the { J }  nor on the boundary condition 
a, as long as a is chosen independent of the J ( i ,  j ) .  

Remark. A weak version of this result (convergence of the mean free energy) was 
proved in [ 1 4 ] .  
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A stronger version, which weakens condition (4b) ,  was recently proved by Zegar- 
linsky [15]. (He  requests existence of moments up  to fourth order of the J(i, j ) .  In 
fact, using his stability bound ([15], formula A6) and  the subadditive ergodic theorem 
as in [12], the argument works even if only the second moment exists.) 

This theorem is actually valid in any dimension (if  ad  >:), The next theorem, 
however, is an  essentially one-dimensional result. 

Theorem 2. If a > 1, J-almost surely we have the following. 
( a )  There is no phase transition 'in the weak sense'. In the thermodynamic limit 

the Gibbs state is pure (extrema1 Gibbs) and does not depend on the (non-random) 
boundary condition v. 

(b)  The correlation functions calculated with respect to this Gibbs state decay with 
the same decay rate as the interaction. 

(c) The free energy is a C" function of temperature and magnetic field. 

Remark 1.  A weaker form of theorem 2 ( a )  (absence of symmetry breaking) was 
essentially proven in [13] and  shortly after in a different way in [16]. The full proof 
of uniqueness and the observation that the arguments give a 'weak sense' proof were 
given in [ 171. The fact that weak uniqueness suffices for physics was discussed before 
in [ 181 (boundary conditions represent the experimental set-up, which does not depend 
on the sample). Weaker upper bounds on asymptotic correlation decay than given in 
2(b)  were given in [17] and  (for vector spins) in [19]. In its present form the theorem 
appeared shortly after the Heriot-Watt conference in [20]. 

Remark. For the case a > i, strong uniqueness (there is only one Gibbs state, whatever 
boundary conditions one prescribes) was proved in [21]. 

The C" property and  the asymptotic correlation decay were proved in [22]. For 
vector spins the (strong) absence of symmetry breaking and an  upper bound on the 
asymptotic correlation decay were proved in [23, 241. 

In the case a > f (in general dimension d,  a d  > f ) ,  high-temperature results have 
been obtained by Frohlich and Zegarlinsky [ 15,25,26]. 

Theorem 3. Let a > t. Then there is Po > 0, such that for 0 G p < Po J-almost surely, 
( a )  the Gibbs state is weakly unique; 
( b )  the correlation functions decay asymptotically at the same rate as the potential; 

(c) the free energy is C". 
and 

Remark. Recently Frohlich and Zegarlinsky have applied their methods to obtain a 
rigorous treatment of the high-temperature phase of the Sherrington-Kirkpatrick model 
[27]. This also has been done via different methods by Aizenman er a1 [28]. 

3. Some remarks about proofs; reduction to a non-random problem and weak against 
strong uniqueness 

Most of the results in the former section have in common that they can be proven by 
reducing the spin-glass problem which has an  interaction decaying as 1 i - j  to a 
non-random problem with an  effective interaction which decays as 1 i - j  I-'-. The proof 
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for this non-random problem can then be at different levels of complication, dependent 
on the problem at hand. The reduction is performed by successively splitting off terms 
from the Hamiltonian and afterwards applying a Taylor expansion or a probabilistic 
estimate to this term. We can use Fubini's theorem to interchange the average over 
one disorder variable j ( i ,  j )  and the thermal average with respect to the modified 
Hamiltonian H,, = H,+ j (  i, j ) s , s ,  where the term corresponding to this j (  i, j )  has been 
subtracted. Because of condition (4) the final expression does not contain first-order 
terms, but has only terms of second and higher order in j (  i, j ) .  

E In t r  exp[-(H,,, + j ( i ,  j )s ,s , ) l  

For example, for the free energy we use 

= E  Intrexp(-H, , , ) - (Ej( i ,  j )  trs,s, e x p ( - H ( i , j ) )  =)O+O(/i-j l- ' ' ) .  
(70) 

(For a proof, see, for example [ 19, appendix].) 
For the thermal expectations we use, i f  j ( i ,  j )  is small, 

t r  f exp[ - ( H!,, + j (  i, j )  S J J  11 
tr exp[-(H,,, + j ( i ,  j)s,5,)1 

E 

s constant x exp[ -( I C 2  )] 
i - j  

For a proof see [17] or [29]. 
This type of estimate often turns out to be useful if one wants to apply the 

Borel-Cantelli lemma. 
The non-random part of the proof can be either known (subadditivity in theorem 

1 [30], Araki's relative entropy method [13, 18, 31, 321, the Leuven energy-entropy 
inequalities [ 16,331, the McBryan-Spencer estimates [ 19,24,34-61 to show the absence 
of symmetry breaking and upper bounds on correlation decay in one and two 
dimensions) or be developed for the problem at hand, like the block spin arguments 
of [17] and [20] which are used to map the system onto an effective high-T model 
(see also [22, 29, 371) and the different polymer expansions of [20, 25, 261 (see also 
[ 2 2 ,  371) which work in high-temperature regions. 

The problem of weak against strong uniqueness comes in as follows. If one applies 
Fubini's theorem to the double integration with respect to the disorder variable J (  i, j) 
and the modified thermal average corresponding to H2,J, this presupposes that H,,J 
does not contain any J (  i, j )  dependence. In particular, H,,, contains boundary condi- 
tions and they should therefore be J( i ,  j )  independent for the proof to work. For 
example, let us consider the interaction energy W between left and right half-lines on 
2, and consider the configuration to the right of the origin as the boundary condition. 
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If a > 1 ,  for each choice of this boundary condition the expression W,({J}, {s}) is 
finite for each s and almost each { J }  (with respect to the J distribution) and so is the 
partition function [ 131 

(8)  

However, if one allows J-dependent boundary conditions and takes the supremum of 
W,, over all boundary conditions U, sup,, W,,(s)=* as soon as a <; [13]. The fact 
that  SUP^,^, W,(s) < for almost all J is the main ingredient in the strong uniqueness 
proof for the case a > ; in [21], but as for the case 1 < a <; one uses the estimates 
(7a)-(7c),  in which we have used Fubini’s theorem to suppress the ‘bad’ (large energy) 
configurations, one only obtains weak uniqueness. 

A criterion for the absence of phase transitions is the disappearing of the Edwards- 
Anderson order parameter which is (formally) defined as [ 1 1  

Z (  W , )  = tr,  exp( W X { s ) ,  IJ})).  

QEA = E h ) ; .  (9) 

By an ergodic theorem one can replace the average over the { J }  by a spatial average 
over the lattice. Weak uniqueness then implies that (J-almost surely) 

for each fixed boundary condition U, or  

sup Iim ~ ( s , ) ? , ~  = 0. , \ - x  

Strong uniqueness means that [38] (J-almost surely) 

Expression (106) is equivalent to a thermodynamic definition which uses a replicated 
system. 

At present there are no  examples known of spin-glass models on regular lattices 
which are weakly but not strongly unique. However, such behaviour does occur for 
certain temperatures in the Bethe lattice spin-glass model [39]. Of course, the Bethe 
lattice is somewhat pathological, as the size of the boundary is macroscopic and also 
the free energy depends on the boundary condition in the thermodynamic limit, but 
it shows at  least in principle that the two notions are really different. A technically 
related problem occurs in unbounded spin systems where weak uniqueness corresponds 
to uniqueness of ‘tempered’ Gibbs states (see, for example, [40, 411). 

Summarising, we have reviewed some recent results on the absence of phase 
transitions for long-range spin-glass models, in particular in one dimension ( a  more 
heuristic treatment of this class of models can be found in [ l o ] ) .  We have discussed 
some common properties of their proofs and described the difference between ‘weak’ 
and ‘strong’ uniqueness. 
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